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We present a derivation of a scattering matrix method providing an exact multimode solution to spin-
dependent quantum transport in multiterminal structures. The method is formulated in a general language such
that it can readily be applied to any spin-S system with spin interactions. We apply the formalism to spin-1/2
electron and spin-3/2 hole transport in three- and four-terminal structures. It is shown that the existence of a
third lead lifts constraints on the flux polarization of two-terminal electron transport. A spin-rectification
property in a three-terminal system with Rashba spin-orbit interaction is demonstrated. We furthermore find
that a four-terminal structure can partition a fully spin-polarized electron flux into two oppositely polarized
fluxes. For holes, we calculate the polarization vector of both the injected states as well as the outgoing states
in a three-terminal structure. Close to the onset of propagating channels, the hole polarization exhibits peak-dip
structures attributed to the angular-momentum dependent Fano resonances in the three-terminal junction. We
rigorously show that when the outgoing state is restricted to a single channel, the polarization is uniquely
determined by the outgoing lead state, independent of the scattering details of the structure.
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I. INTRODUCTION

Theoretical understanding of phase-coherent quantum
transport in multiterminal structures was advanced by
Büttiker,1 who realized that all terminals in such a quantum
system should be treated on an equal footing. Inspired by
this, theoretical investigations,2–19 as well as experimental
investigations20–27 have since been undertaken to study
charge transport in low-dimensional multiterminal structures.

Today, the subject of spin-dependent transport in multiter-
minal structures with spin-orbit interaction �SOI� has become
an area of research, which attracts great attention due to the
occurrence of interesting SOI-induced spin polarization28–31

and noise phenomena32 in the structures. To treat spin-
dependent quantum transport in multiterminal nanostructures
accurately, interchannel interactions, which were completely
neglected in Refs. 28–31 while only treated perturbatively in
Ref. 32, needs to be fully included. This calls for a stable
numerical method since no closed-form solution exists for
confined SOI systems. Green’s function approaches, which
are formulated based on real-space lattice models, have been
employed to study spin-dependent quantum transport in mul-
titerminal systems.33–36 These studies have, however, largely
been limited to devices with simple geometrical structures.
This is possibly due to numerical difficulties in treating mul-
titerminal systems with complicated geometrical structures
and the resulting tight-binding Hamiltonians in Green’s func-
tion approaches.

In this paper we will derive an exact multiterminal multi-
channel scattering matrix method for spin-dependent quan-
tum transport. The method is formulated in a general lan-
guage, which allows for applications to electron transport, as
well as to hole transport, in confined mesoscopic systems
with complex geometries and can easily be extended to finite
temperatures.37 We will utilize the presented method to study

spin angular-momentum polarization of transported carriers
in three- and four-terminal structures. It is found that the
presence of a third lead lifts some of the symmetry con-
straints on the spin-polarization properties derived within the
two-terminal theory. Our numerical calculations are verified
by an analytical derivation of the symmetry constraints on
the spin-dependent transport in multiterminal structures. In
particular, we demonstrate an electron-spin rectification in a
three-terminal structure as well as a partitioning of a fully
spin-polarized flux into two oppositely polarized fluxes in a
four-terminal structure. For holes it is found that the outgo-
ing states in a three-terminal structure is largely unpolarized,
except to those close to the opening of the transmission
channels, where the angular-momentum Fano interactions
give rise to the peak-dip features in the polarization. Further-
more, it is shown that when the outgoing lead only supports
a single channel, the carrier polarization is independent of
the scattering details of the system.

The paper is organized as follows: In Sec. II, we will
present the spin-resolved scattering matrix formalism for
multichannel multiterminal transport. By formulating it in a
general spinor language it does not depend on the explicit
form of the Hamiltonian and is therefore able to treat both
electron and hole transports on an equal footing. In Sec. III,
we will apply the formalism to the study of spin-resolved
electron transport in three- and four-terminal structures with
Rashba spin-orbit interaction, and in Sec. IV, the formalism
is applied to the hole transport in a three-terminal junction.
Conclusions are presented in Sec. V.

II. FORMALISM

A. Scattering matrices in the individual branches

We set out to derive a scattering matrix formalism for a
multiterminal structure by briefly introducing the procedure
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of deriving two-terminal scattering matrices in the individual
branches. Our model multiterminal structure is shown in Fig.
1, which consists of five branches labeled as 1–4 and C. The
multiterminal system is divided into a large number of slices
along the transport direction x depicted in Fig. 1, such that in
each slice, any device-characteristic parameter can be treated
as a constant along the transport direction. By representing
the Hamiltonian in a local complete spinor basis ����n

��i���,
where n labels the spatial degrees of freedom and � labels
the spinor components, the eigensolutions in slice i of branch
� at a given Fermi energy can be found and written as

��
��i� = eik�

��i�x�
�n

d�,�n
��i� ���n

��i�� . �1�

The scattering wave function in slice i of branch � can,
hence, be written as

���i� = �
�,�n

�a�
��i�,Id�,�n

��i�,Ieik�
��i�,Ix + a�

��i�,IId�,�n
��i�,IIeik�

��i�,IIx	���n
��i�� .

�2�

Here we have separated the eigensolutions ���
��i�� into a set

���
��i�,I� with I= �� �I�k�

��i�	=0∧v�
��i��0∨I�k�

��i�	�0�, con-
sisting of forward propagating or evanescent modes and a set
���

��i�,II� with II= �� �I�k�
��i�	=0∧v�

��i�	0∨I�k�
��i�		0�, con-

sisting of backward propagating or exploding modes, where
v�

��i� is the velocity expectation value of mode ��
��i�. By im-

posing continuity requirements on the wave function and the
flux between every two adjacent slices, a scattering matrix
for a two-terminal structure was derived in Ref. 38. This
formalism can readily be applied on each individual branch
�, generating a scattering matrix S��i , j�, which connects the
amplitudes of the wave function in any two slices i and j in
the branch,


AI
��i�

AII
��j� � = S��i, j�
AI

��j�

AII
��i� � , �3�

where AI
��i� and AII

��i� are coefficient vectors containing
�a�

��i�,I� and �a�
��i�,II�, respectively. By setting S�=S��1,N��,

we can write the full two-terminal scattering matrix equa-
tions, which relate the amplitudes of the waves at slices 1
and N1 of branch 1 and the amplitudes of the waves at slices
1 and N2 of branch 2, respectively, as


AI
1�N1�

AII
1�1� � = �S11

1 S12
1

S21
1 S22

1 
 AI
1�1�

AII
1�N1� � , �4�


AI
2�N2�

AII
2�1� � = �S11

2 S12
2

S21
2 S22

2 
 AI
2�1�

AII
2�N2� � . �5�

The two-terminal scattering matrix equations for the central
branch and the two right branches, i.e., branches 3 and 4, can
be derived in the same way. For further details of the deri-
vation of the scattering matrix for a two-terminal electron
system in the presence of a SOI, we refer to Ref. 38; while
for a two-terminal hole system, we refer to Sec. IV.

B. Three-terminal scattering matrix

We will now present our derivation of the scattering ma-
trix for a three-terminal quantum structure. Consider a device
shown in the left half of Fig. 1. At the three-terminal inter-
section where branches 1 and 2 connect with branch C, the
relations between the expansion coefficients of the wave
function in slice N1 of branch 1, slice N2 of branch 2, and
slice 1 of branch C can be obtained by imposing continuity
requirements on the wave function and the flux. This can be
written in the form of a matrix equation as

�PI PII

QI QII
��I 0

0 �II
��AI

L�N�	
�AII

L�N�	 � = 
DI
C�1� DII

C�1�

RI RII
�
AI

C�1�

AII
C�1� � .

�6�

Here, to simplify the notation, we define �AI
L�N�	

= �AI
1�N1� ,AI

2�N2�	T and �AII
L�N�	= �AII

1�N1� ,AII
2�N2�	T. The explicit

forms of the matrices in Eq. �6� are given by

�DI�II�
��i� 	�n,� = d�,�n

��i�,I�II�,

PI�II� = �F1DI�II�
1�N1�,F2DI�II�

2�N2�	 ,

QI�II� = 
QI�II�
1�N1� 0

0 QI�II�
2�N2� � ,

RI�II� = 
�F1�TQI�II�
C�1�

�F2�TQI�II�
C�1� � ,

�I�II� = 

I�II�
1�N1� 0

0 
I�II�
2�N2� � , �7�

where

�F����n�,�n = ����n�
C�1� ���n

��N��� , �8�

is the matrix of the overlap integrals between the basis func-
tions in slice N� of branch � and the basis functions in slice
1 of branch C, �I

��N�� and �II
��N�� are the diagonal matrices

consisting of elements �exp�ik�
��N��,Il�N��	����� and

�exp�ik�
��N��,IIl�N��	�����, respectively, with l�N�� denoting the

longitudinal length of stripe N� in branch �, and QI
��i� and

C

3

4

1

2

x

yN112 3

N2

1

1

w

w
w

5w

FIG. 1. Schematic of a three- and four-terminal system. The left
side represents the three-terminal junction, which can be connected
to another junction �right side� to form a four-terminal structure.
The system is divided into slices in the transport direction and a
local basis is used in each slice. The scale arrows indicate measures
used for the numerical calculations in Secs. III and IV.
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QII
��i� are the flux matrices, which can be formally written as

QI
��i�=vI

��i�DI
��i� and QII

��i�=vII
��i�DII

��i�. Here, vI
��i� and vII

��i� are
the velocity matrices. The forms of the velocity matrices
depend on the Hamiltonian �see, for example, Refs. 38–40�
and will thus be specified in later sections, where explicit
systems are considered.

In deriving Eq. �6�, we have assumed that the transverse
width of the central branch at the interface contains the trans-
verse extensions of both branches 1 and 2 �see Fig. 1�. It is
important here to note that the matrix equation that describes
the matching of the wave function needs to be projected onto
the basis functions whose transverse extensions contain both
sides of the matched domain; whereas the matrix equations
that describe the matching of the flux need to be projected
onto the basis functions having the smaller transverse
extensions.12 After some algebra41 we find

AI
C�1� = U�AI

L�N�	 + VAII
C�1�,

�AII
L�N�	 = �II

−1QII
−1 � ��RIU − QI�I��AI

L�N�	 + �RIV + RII�AII
C�1�� ,

�9�

with

U = �DI
C�1� − PIIQII

−1RI	−1�PI − PIIQII
−1QI��I,

V = �DI
C�1� − PIIQII

−1RI	−1�PIIQII
−1RII − DII

C�1�	 . �10�

Equation �9� relates the amplitudes of the outgoing, propa-
gating, and decaying waves to the amplitudes of incoming,
propagating, and exploding waves at the connection interface
of the three branches. To relate the amplitudes of the waves
in the leads connecting to branches 1 and 2 to the amplitudes
of the waves in the central branch, we cast Eqs. �4� and �5�
into

��AI
L�N�	

�AII
L�1�	 � =�

S11
1 0 S12

1 0

0 S11
2 0 S12

2

S21
1 0 S22

1 0

0 S21
2 0 S22

2
���AI

L�1�	
�AII

L�N�	 �
= �S11 S12

S21 S22
��AI

L�1�	
�AII

L�N�	 � . �11�

Inserting this equation into Eq. �9�, we find

AI
C�1� = U�S11 + S12X�RIU − QI�I�S11	�AI

L�1�	

+ �US12X�RIV + RII� + V	AII
C�1�,

�AII
L�1�	 = �S22X�RIU − QI�I�S11 + S21	�AI

L�1�	

+ S22X�RIV + RII�AII
C�1�, �12�

where

X = �1 − �II
−1QII

−1�RIU − QI�I�S12	−1�II
−1QII

−1. �13�

This leads to a three-terminal scattering matrix �3T, which
relates the amplitudes of the outgoing and decaying waves in
the first slices of branches 1, 2, and C to the amplitudes of
the incoming and exploding waves in these branch slices,

� AI
C�1�

�AII
L�1�	 � = ��11

3T �12
3T

�21
3T �22

3T 
�AI
L�1�	

AII
C�1� � , �14�

with

�11
3T = U�S11 + S12X�RIU − QI�I�S11	 ,

�12
3T = US12X�RIV + RII� + V ,

�21
3T = S22X�RIU − QI�I�S11 + S21,

�22
3T = S22X�RIV + RII� . �15�

This scattering matrix can now be iterated over the slices in
branch C by the standard scheme described in Ref. 39 to
generate the complete scattering matrix S3T for the three-
terminal system,

�AI
C�NC�

�AII
L�1�	 � = �S11

3T S12
3T

S21
3T S22

3T��AI
L�1�	

AII
C�NC� � . �16�

In this equation, we have expressed the amplitudes of the
outgoing and decaying waves in the first slices of branches 1
and 2 and the NCth slice of branch C in terms of the ampli-
tudes of the incoming and exploding waves in these slices. A
similar three-terminal scattering matrix equation can be de-
rived for the three-branch structure shown in the right half of
Fig. 1, consisting of the central branch and the branches 3
and 4.

C. Four-terminal scattering matrix

In order to generate a four-terminal scattering matrix for
the multiterminal structure shown in Fig. 1, we make use of
our progress so far �Eq. �16�	 and consider the wave function
and flux continuity requirements at the second three-branch
junction. At this junction interface, the presented procedure
for deriving the three-terminal scattering matrix can once
more be used. However, it must be employed in the reversed
order, going from the central branch to the branches 3 and 4.
We write this as


DI
C�NC� DII

C�NC�

R̃I R̃II
���̃I 0

0 �̃II


AI
C�NC�

AII
C�NC� �

= � P̃I P̃II

Q̃I Q̃II

��AI
R�1�	

�AII
R�1�	 � , �17�

where �AI�II�
R�1�	= �AI�II�

3�1� ,AI�II�
4�1�	T are the coefficient vectors in the

leftmost slices, connecting to the central branch in branches
3 and 4, and

P̃I�II� = �F̃3DI�II�
3�1�,F̃4DI�II�

4�1�	 ,

Q̃I�II� = 
QI�II�
3�1� 0

0 QI�II�
4�1� � ,

R̃I�II� =
�F̃3�TQI�II�
C�NC�

�F̃4�TQI�II�
C�NC� � ,
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�̃I�II� = 
�I�II�
C�NC� 0

0 �I�II�
C�NC� � , �18�

where the overlap integral matrix is now given by

�F̃����n�,�n = ����n�
C�NC����n

��1�� , �19�

and matrices DI
��i� and DII

��i�, �I
C and �II

C, and QI
��i� and QII

��i�,
with �=3, 4, or C, are defined as in Eq. �7�. After some
algebra, Eq. �17� can be written as

�AI
R�1�	 = ŨAI

C�NC� + Ṽ�AII
R�1�	 ,

AII
C�NC� = �̃II

−1�DII
C�NC��−1��P̃IŨ − DI

C�NC��̃I	AI
C�NC�

+ �P̃IṼ + P̃II��AII
R�1�	� . �20�

This equation relates the amplitudes of the waves in the
slices at the second junction. Using the results of Eq. �16�,
we can eliminate the coefficient vectors AI

C�NC� and AII
C�NC�

and find the following four-terminal scattering matrix equa-
tion:


�AI
R�1�	

�AII
L�1�	

� = ��11
4T �12

4T

�21
4T �22

4T 
�AI
L�1�	

�AII
R�1�	

� , �21�

with

�11
4T = Ũ�S11

3T + S12
3TX̃�P̃IŨ − DI

C�NC��̃I	S11
3T� ,

�12
4T = ŨS12

3TX̃�P̃IṼ + P̃II� + Ṽ ,

�21
4T = S22

3TX̃�P̃IŨ − DI
C�NC��̃I	S11

3T + S21
3T,

�22
4T = S22

3TX̃�P̃IṼ + P̃II� , �22�

where

Ũ = �Q̃I − R̃II�DII
C�NC�	−1P̃I�−1�R̃I − R̃II�DII

C�NC�	−1DI
C�NC���̃I,

Ṽ = �Q̃I − R̃II�DII
C�NC�	−1P̃I�−1�R̃II�DII

C�NC�	−1P̃II − Q̃II� ,

X̃ = �1 − �̃II
−1�DII

C�NC�	−1�P̃IŨ − DI
C�NC��̃I	S12

3T�−1�̃II
−1�DII

C�NC�	−1.

�23�

Equation �21� relates the amplitudes of the outgoing and de-
caying waves to the amplitudes of the incoming and explod-
ing waves in the first slices of branches 1–4. This scattering
matrix equation can now be iterated by the standard proce-
dure over branches 3 and 4 simultaneously to give the full
scattering matrix equation of the four-terminal system,

��AI
R�N�	

�AII
L�1�	 � = �S11

4T S12
4T

S21
4T S22

4T ��AI
L�1�	

�AII
R�N�	 � . �24�

By setting the first slices in branches 1 and 2, as the two left
leads, and the final slices in branches 3 and 4, as the two
right leads, this four-terminal scattering matrix equation de-
scribes the relations between the amplitudes of the outgoing

and incoming waves in the four connecting leads of a four-
terminal structure.

D. Transmissions and spin-polarization vectors

Once the scattering matrix SMT of a multiterminal system
has been calculated, the complete scattered wave function of
the system is given and, hence, any physical quantity in the
system can be calculated. In particular, we are interested in
the spin-dependent transport properties, which are character-
ized by the spin-resolved complex transmission amplitudes
from lead � to ��,

t�
��
� ,��

=�� v�
��
�

v��

��SMT��
��
� ��

. �25�

From these transmission amplitudes, the multiterminal trans-
mission probability T��� and electron flux polarization vector
P��� can be calculated by a straightforward generalization of
the two-terminal results of Ref. 42. For a derivation of the
flux polarization vector of a multiterminal hole system, we
refer to Sec. IV.

We note that the presented formalism gives an exact so-
lution to the spin-dependent transport of a multiterminal sys-
tem. For a numerical implementation, the complete expan-
sion basis of infinite dimension in Eq. �2� has to be truncated
at a finite value N. Due to the completeness of the basis set,
the data converges to the exact limit for large N. In the
calculations, we have made N as large as necessary to obtain
a desired numerical accuracy.

III. ELECTRONS

We now apply our derived formalism to study coherent
multiterminal electron-spin transport properties in a three-
and four-terminal junction �Fig. 1� created by, e.g., litho-
graphic techniques in a two-dimensional electron gas. In the
central branch a local Rashba SOI ��r� exists. This interac-
tion can be induced by a top gate, creating a local structure-
inversion asymmetry of the confinement well. Taking the
Cartesian z axis along the heterostructure growth direction,
the Hamiltonian, in atomic units, of the system is given by

H =
p2

2m�
+ V�r� +

1

2
���r���xpy − �ypx� + H.c.	 , �26�

with velocity operator vx= px /m�−��r��y. Branches 1, 2, and
C for the three-terminal structure, as well as branches 1 to 4
for the four-terminal structure, are connected to perfect leads
of transverse width w with vanishing spin-orbit interaction.

In Fig. 2, we show the calculated flux polarization vector
of a cross section in leads 1 and 2 of the three-terminal
structure shown in the left part of Fig. 1, resulting from an
unpolarized injection of carriers in the central branch. Due to
the vanishing SOI in the leads the polarization is independent
of the longitudinal position in the leads. Here the junction
connecting leads 1 and 2 with the central lead is taken to be
5w long. In the junction the local Rashba SOI is taken to be
constant and of strength �=0.22 /wm�. Similar to the spin
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accumulation along the transverse edges of a waveguide akin
to the spin Hall effect,43,44 we observe that the x and z com-
ponents, respectively, �Figs. 2�a� and 2�c�	 are nonzero and
antisymmetric in the two outgoing leads. This contrasts the
two-terminal transport where, due to the reflection symmetry,
the x and z components vanish identically.42 However, con-
sidering the polarization in branches 1 and 2 combined, the
antisymmetry implies the two-terminal result of the vanish-
ing spin-polarization components along the x and z direc-
tions. The y components, on the other hand, are identical in
the two leads and are therefore nonzero, even when consid-
ering the combined polarization of both branches. This is
consistent with the symmetric spin accumulations along the
edges of a waveguide projected in the transverse direction
found in Ref. 43. We note that all polarization components
are nonzero in the single spin-degenerate channel regime as
opposed to the two-terminal results42,45,46 since the coherent
superposition of the outgoing state in the two branches sup-
ply two spin-degenerate channels.

We now turn to the study of transport in the opposite
direction, i.e., injections in branches 1 and 2. Figure 3 shows
the spin-polarization components of the outgoing flux in the
central branch for an unpolarized injection in branch 1 �solid
line� and for an unpolarized injection in branch 2 �dashed
line�. It is seen that the x component of the polarization in the
central branch �Fig. 3�a�	 resulting from an unpolarized in-
jection in branch 1 is antisymmetric to the polarization, re-
sulting from an injection of unpolarized carriers in branch 2.
For a simultaneous injection of unpolarized carriers in
branches 1 and 2, the resulting polarization vanishes. This is
also true for the z component of the polarization shown in
Fig. 3�c�. The induced y component of the polarization in
Fig. 3�b� is identical for injection in branches 1 and 2. This

therefore naturally gives a finite transverse polarization com-
ponent from a simultaneous injection in branches 1 and 2.
However, here the y components are only nonzero, when the
central lead supports more than one spin-degenerate channel.
We see that Figs. 2 and 3 imply a spin-polarization rectifica-
tion in the y component between unpolarized injections in
the central branch and in branches 1 and 2, similar to what
was found in a two-terminal horn structure.47

An interesting observation from the results of Figs. 2 and
3 is that by measuring transport between, e.g., branches 1
and C, the presence of a third lead allows a finite polarization
to be achieved in the single spin-degenerate channel regime
of the outgoing lead. This is in strong contrast to a two-
terminal system where the time-reversal symmetry con-
strains the polarization components to vanish for single-
channel transport.42,45,46

Let us analytically prove the results observed in the nu-
merical calculations. Assuming the eigenmodes in the leads
to be normalized by their velocities and applying the Einstein
summation convention, we can write the scattering matrix
for the considered three-terminal system as

� an1�1

1,II

an2�2

2,II

anC�C

C,I � =�
tn1�1,nC��C�
1C rn1�1,n1��1�

1 tn1�1,n2��2�
12

tn2�2,nC��C�
2C tn2�2,n1��1�

21 rn2�2,n2��2�
2

rnC�C,nC��C�
C tnC�C,n1��1�

C1 tnC�C,n2��2�
C2 ��

anC��C�
C,II

an1��1�
1,I

an2��2�
2,I � .

�27�

The Hamiltonian is symmetric under the operation �yRy with
Ry being the reflection operator in the transverse direction.
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FIG. 2. �a�–�c� Electron flux polarization components in leads 1
�solid line� and 2 �dashed line� of the three-terminal structure due to
an unpolarized injection in the central branch as a function of the
Fermi energy of the carriers. The x and z components show an
antisymmetry between the two outgoing leads, whereas the y com-
ponents are identical in the two leads. �d� Schematic indicating the
incoming and outgoing fluxes and area of nonzero SOI.

−1

0

1

−0.08

0

0.08

1 2 3 4 5 6 7 8 9 10
−1

0

1

EF [π2/w22m*]

P y
P x

P z

(a)

(b)

(c)

(d)

SOI

FIG. 3. �a�–�c� Electron flux polarization components in the cen-
tral lead due to an unpolarized injection in branches 1 �solid line�
and 2 �dashed line� as a function of the Fermi energy of the carriers.
The x and z components show an antisymmetry between injections
in the two leads, whereas the y components resulting from the in-
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nents are zero when only one doubly-degenerate channel is avail-
able in the central lead. �d� Schematic indicating the incoming and
outgoing fluxes and area of nonzero SOI.
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This operation maps the eigenmodes of leads 1 and 2 onto
each other, such that

�yRy:�n1�1
�y�1,I�II� → i�̄1�− 1�n1�n1�̄1

�− y�2,I�II�

and conversely

�yRy:�n2�2
�y�2,I�II� → i�̄2�− 1�n2�n2�̄2

�− y�1,I�II�,

whereas the eigenmodes of the central lead naturally maps
onto themselves

�yRy:�nC�C
�y�C,I�II� → i�̄C�− 1�nC�nC�̄C

�− y�C,I�II�.

By considering these transformations,42 we find that the scat-
tering matrix must satisfy

� i�̄1�− 1�n1an1�̄1

2,II

i�̄2�− 1�n2an2�̄2

1,II

i�̄C�− 1�nCanC�̄C

C,I � =� tn1�1,nC��C�
1C rn1�1,n1��1�

1 tn1�1,n2��2�
12

tn2�2,nC��C�
2C tn2�2,n1��1�

21 rn2�2,n2��2�
2

rnC�C,nC��C�
C tnC�C,n1��1�

C1 tnC�C,n2��2�
C2 �

� �
i�̄C�− 1�nCanC� �̄C�

C,II

i�̄1��− 1�n1�an1��̄1�
2,I

i�̄2��− 1�n2�an2��̄2�
1,I � . �28�

Comparing Eq. �27� with Eq. �28�, we find that the transmis-
sion amplitudes satisfy

tn1�1,nC�C

1C = �− 1�n1+nC�1�Ctn1�̄1,nC�̄C

2C ,

tnC�C,n2�2

C2 = �− 1�n2+nC�2�CtnC�̄C,n2�̄2

C1 . �29�

For the injection in the central branch this implies the con-
straints on the spin-resolved conductance and flux polariza-
tion,

G���
1C = G�̄��̄

2C ,

Px,z
1C = − Px,z

2C,

Py
1C = Py

2C. �30�

This shows that the antisymmetric polarizations along the x
and z directions and the equality of the y components in-
duced in branches 1 and 2 in Fig. 2 are rigorous results of the
symmetry constraints of the system. Here, the nonvanishing
x and z components, which are not found in a transversely
symmetric two-terminal system, arise due to the effective
symmetry breaking by the projection onto branch 1 or 2.
Furthermore, since a measurement of the flux polarization in
one of the outgoing branches immediately gives the polariza-
tion in the other outgoing branch, the spin flux in the two
branches are entangled by symmetry. From Eq. �29�, we can
also deduce the constraints on the spin-resolved conduc-
tances and flux polarizations for the transport from branches
1 and 2 into the central branch,

G���
C1 = G�̄��̄

C2 ,

Px,z
C1 = − Px,z

C2,

Py
C1 = Py

C2. �31�

These constraints confirm the symmetries of the polarization
shown in Fig. 3.

Consider now a four-terminal structure created by con-
necting two three-terminal structures back-to-back indicated
in Fig. 1. It is straightforward to generalize the above sym-
metry consideration to the four-terminal structure giving the
constraints

tn3�3,n1�1

31 = �− 1�n1+n3�1�3tn3�̄3,n1�̄1

42 ,

tn4�4,n1�1

41 = �− 1�n1+n4�1�4tn4�̄4,n1�̄1

32 . �32�

For the injection of unpolarized carriers in both branches 1
and 2, these constraints imply antisymmetric x and z polar-
ization components and identical y components in the outgo-
ing branches 3 and 4.

As seen in Fig. 4�a�, this is also true if branches 1 and 2
are injected with carriers of opposite polarization, e.g, spin
up in branch 1 and spin down in branch 2. This follows since
the �yRy symmetry operation maps a spin-up mode in lead 1
onto a spin-down mode in lead 2, and similarly for leads 3
and 4 �see the symmetry discussion of the three-terminal
system�. However, this symmetry is broken by injecting the
two branches with carriers of the same polarization, e.g., spin
up in both branches 1 and 2. This is seen in Fig. 4�b� as an
asymmetric polarization in the outgoing branches 3 and 4.
Here, although the outgoing polarizations are not constrained
by symmetry to be opposite, we see that the four-terminal

−1
−0.5
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−0.5
0

0.5
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P z
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FIG. 4. �a� and �b� Electron flux polarization components in a
four-terminal junction as a function of Fermi energy for spin-
polarized injection. �a� Polarization in lead 3 �solid line� and lead 4
�dashed line� for simultaneous injection of spin-up polarized elec-
trons in branch 1 and spin-down polarized carriers in branch 2. �b�
Same as �a� except for spin-up polarized injected carriers in both
branches 1 and 2. The four-terminal structure is able to partition a
fully spin-polarized flux into two largely oppositely-polarized
fluxes. �c� Schematic figure indicating the incoming and outgoing
fluxes and area of nonzero SOI.
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structure can create two largely oppositely-polarized fluxes
from a completely spin-polarized flux, e.g., a spin-up polar-
ized flux in leads 3 and a spin-down polarized flux in branch
4 from the injection of spin-up polarized carriers in branches
1 and 2.

IV. HOLES

We now turn our attention to the much less studied field
of hole transport in nanostructures. To this end we will con-
sider a three-terminal structure �Fig. 1�, with the same di-
mensions as considered for the electron transport in Sec. III,
in a two-dimensional GaAs hole gas, grown along the crys-
tallographic �001	 direction. We again take the Cartesian z
axis to be parallel with the growth direction. The 4�4 Lut-
tinger Hamiltonian48 in atomic units, describing the heavy-
and light-hole semiconductor valence bands then reads

H =

̃1

2
�2 − 
2�Jx

2�x
2 + Jy

2�y
2 + Jz

2pz
2� −


3

2
��Jx,Jy���x,�y�

+ �Jx,Jz���x,�z� + �Jz,Jy���z,�y�� + 2��BB · J + V�r� ,

�33�

where 
i and � are bulk band parameters,49 
̃1=
1+5
2 /2
and Ji are the 4�4 angular-momentum matrices,50 and the
kinetic momentum �i= pi+Ai. The grown heterostructure
quantum well is assumed to be of square geometry with
width az=0.05w, where w is the smallest transverse confine-
ment width in the structure �i.e., the leads connecting the
branches�. The Hamiltonian is projected onto the lowest state
in the growth direction with �pz

2�=2 /az
2 and �pz�=0.

We will consider two magnetic-field orientations: in the
out-of-plane z direction and in the in-plane transverse y
direction. The field strength is taken to be B=10−3�pz

2�. For
the out-of-plane direction, we choose the vector potential
A=−yBzx̂. For the in-plane field direction, the ratio of the
magnetic length to the confinement length is �lB

2 /az
2

=��pz
2� /2B=�103 /2. The vector potential contribution is,

in this case, negligible and we therefore take A=0 for the
in-plane field direction.

The system is again divided into slices and the eigensolu-
tion in each slice is assumed on the form of Eq. �1� with a
four-component spinor basis. To find the scattering wave
function at a given Fermi energy, we map the Schrödinger
equation to an eigenequation in the wave numbers as

�0 R−1

S T
�d

f
 = k��d

f
 , �34�

with

�d�n�,� = dn�,�, f = k�Rd,

R = �
1

2
1 − 
2Jx

2 � 1 ,

S = 1 � �EF1 −

1

2
�py

2 + Ax
2 + �pz

2�1	 ,

+ 
2�Jy
2

� py
2 + Jx

2
� Ax

2 + �pz
2�Jz

2
� 1� ,

+ 
3�Jx,Jy� � Axpy − 2��BB · J � 1 ,

T = 

3�Jx,Jy� � py − � 
̃1

2
1 − 
2Jx

2 � 2Ax�R−1. �35�

We note that py, py
2, Ax, Ax

2, and Axpy here are matrix repre-
sentations of the operators in the chosen spatial basis. The
states are separated into two sets, I and II, as I= �� �I�k��
=0∧v��0∨I�k���0� and II= �� �I�k��=0∧v�	0∨I�k��
	0�. Using the velocity operator derived directly from the
Hamiltonian,

vx = i�H,x	 = �
̃11 − 2
2Jx
2

� 1�px − 
3�Jx,Jy� � py

+ � 
̃1

2
1 − 
2Jx

2 � 2Ax, �36�

we can calculate the expectation value of vx for the eigen-
state corresponding to the wave number k� as

v� = �vx�k��� = �
��m,�n

�d��m,�������m��
̃11 − 2
2Jx
2

� 1�k�

− 
3�Jx,Jy� � py + � 
̃1

2
1 − 
2Jx

2
� 2Ax���n�d�n,� = d�

†v�k��d�, �37�

where v�k�� is the matrix representation of the velocity op-
erator, in the chosen representation, used to construct the Q
matrices in the scattering matrix formalism.

In our calculations we will not make any simplifying as-
sumptions on the leads but rather calculate the true eigen-
states from the Luttinger Hamiltonian �Eq. �33�	. Corrections
found in the Kane Hamiltonian49 are straightforward to
implement by adding the necessary terms in Eq. �35� and the
velocity operator of Eq. �36�.

We now move on to derive the polarization vector for the
hole system. The density matrix for an injected state in
branch C normalized to unit velocity can be written as

��
C = �

�n,��m

d�n,�
C d��m,�

C�

v�

��n����m� . �38�

Each mode is injected incoherently, and the angular-
momentum expectation value is given by

�J�C =

�
�

Tr�J��
C�

�
�

1/v�

=

�
�,���n

d�n,�
C d��n,�

C� ����J���/v�

�
�

1/v�

,

�39�

with the sum over � taken over the propagating modes, i.e.,
with I�k��=0. The density matrix for the outgoing state in
the lead connecting branch �=1 or 2 is given by
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�� =
1

T�C �
�,��n,����m

�v�v��

�v��
�S3T��,��S3T���,�

�

� ei�k�−k���xd�n,�
� d��m,��

�� ��n����m� , �40�

where T�C is the transmission probability from lead C to �.
From this, the angular-momentum expectation value can be
calculated as

�J�� =
1

T�C �
�,��n,����

�v�v��

�v��
�S3T��,��S3T���,�

�

� ei�k�−k���xd�n,�
� d��n,��

�� ����J��� . �41�

In Fig. 5�a�, we show the polarization of the injected states in
the central branch for a weak magnetic field applied in the
out-of-plane z direction, Bz=10−3�pz

2� �Ref. 51�. A pure
heavy-hole �light-hole� state has Pz= �3 /2��1 /2�. Devia-
tion from these values therefore indicates a state with mixed
heavy-light-hole character. For the first Zeeman-split sub-
band, the injected mode shows Pz=−3 /2, being a pure
heavy-hole state polarized along the magnetic-field direction.
This is consistent with the results for two-dimensional hole
gases at small wave numbers,49 relevant here due to the lead
width to heterostructure-well width ratio w /az=20. In the
single-channel energy regime, the complete flux is naturally
carried by this single mode. As the second channel of the
Zeeman-split pair open for transport, the injected flux is
distributed—unequally—on both channels, and the angular-
momentum contribution carried by each individual channel
is reduced. The polarization vector amplitude of each chan-
nel is therefore reduced and saturates at Pz� �0.75 for
Fermi energies well above the subband edge. As the Fermi
energy EF→�, each channel carries an infinitesimal angular
momentum, implying a vanishing amplitude of each channel

polarization vector �see EF=3�pz
2� in Fig. 5�. We see that,

except at the onset of conducting channels where the small
Zeeman-energy split is most pronounced, the polarization of
the modes is opposite to each other. Since for multimode
transport all available channels are injected incoherently, the
polarization of the injected state is the vector addition of the
individual mode contributions. The complete injected state is
therefore unpolarized at B→0.

The polarizations of the outgoing states in branches 1 and
2 are shown in Fig. 5�b� �Ref. 51�. When only one split
channel is open, the available state is pure and the angular-
momentum expectation value of the outgoing state reduces
to

�J�single channel
� = �

n���

dn�,1
� dn��,1

�� ����J��� , �42�

which is just the expectation value of the lowest state in the
lead, independent of the transmission properties, and hence
the nature of scattering in the junction. The outgoing state is
therefore a pure heavy-hole state, similar to the injected
state. This is true as long as only the first channel is open. As
the second channel opens, the outgoing polarization sharply
drops close to zero, and remains so until the third and fourth
channel open up. At this subband edge and at each consecu-
tive subband edge, an asymmetric peak-dip structure fol-
lowed by a dip is found in the polarization. Figure 6�a� re-
veals that the peak-dip structure appears below the subband
edge and the following dip lies between the Zeeman-split
subband edges. Looking at the transmission probability in
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FIG. 5. Hole polarization as a function of the Fermi energy at
Bz=10−3�pz

2� of �a� injected states in the central branch, and �b�
outgoing states in leads 1 �solid line� and 2 �dashed line�. �c� Sche-
matic figure indicating the incoming and outgoing fluxes and direc-
tion of the magnetic field.
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FIG. 6. �Color online� �a� First peak structures of Fig. 5 in finer
scale with vertical dashed lines indicating the third and fourth sub-
band edges. �b� Transmission probability from the central branch to
branches 1 �black thick solid line� and 2 �black thick dashed line�
and reflection into the central branch �thin red line�. Antisymmetric
peak dip in polarization corresponding to the transmission dip close
to the subband edge indicating the angular-momentum dependent
Fano scattering in the three-terminal junction.
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Fig. 6�b�, we see that the peak dip in the polarization is
accompanied by a dip in the transmission probability. This
suggest that this feature is related to an angular-momentum
Fano resonance due to interaction with localized states in the
three-terminal junction.38,52

For a weak magnetic field applied in the transverse y di-
rection, By =10−3�pz

2�, the injected states show weak polariza-
tion along the transverse field �see Fig. 7�a�	. However, the
outgoing state �Fig. 7�b�	 is largely polarized in the out-of-
plane z direction53 with an antisymmetry between branches 1
and 2. This symmetry contrasts a magnetic field applied in
the out-of-plane direction �Figs. 5 and 6�, where the outgoing
polarization did not carry any symmetry. A symmetry be-
tween branches 1 and 2 implies conservation of an operator
U, containing the transverse reflection. From �Jx ,Jy�
=�3�y � 1, we then know that in order for U to commute
with the Luttinger Hamiltonian, it needs to be on the form
U= ��x � m�Ry or U= ��z � m�Ry, with m being some 2�2
matrix. From Jx

2= ��3 /2��x � 1− �1 /2��z � �z+ �5 /4�, we see
that the only possibilities are U= ��x � �x�Ry or
U= ��x � �y�Ry �Ref. 54�. We have thus found all the pos-
sible symmetries of the Luttinger Hamiltonian at B=0, con-
taining a transverse reflection. With a magnetic field in the x
or y direction, the possible symmetry operators are reduced
to U= ��x � �x�Ry or U= ��x � �y�Ry, respectively. For a
magnetic field in the z direction, due to the fact that
Jz=�z � 1+ �1 /2�1 � �z, there is no operator containing re-

flection symmetry, which commutes with the Hamiltonian
implying the observed absence of symmetry in Figs. 5 and 6.

V. CONCLUSION

The presented spin-dependent multichannel multiterminal
scattering matrix method provides an exact solution to the
spin-dependent quantum transport problem. It has been de-
rived in such a way as to provide an efficient and stable
numerical implementation. The method can, e.g., be applied
to study coherent spin currents and polarization, spin-
dependent noise and entanglement, spin accumulations,
phase properties, etc., in multiterminal structures. By apply-
ing this method, it showed how the coherent nature of the
scattered carriers and the existence of multiple terminals, af-
fect the polarization properties in comparison with the pre-
viously derived two-terminal results. We furthermore showed
a polarization-rectification effect for electrons in a three-
terminal structure with a local Rashba spin-orbit interaction.
A fully spin-polarized flux can be partitioned into a spin-up
and a spin-down polarized flux, utilizing a four-terminal
junction with SOI.

For holes the polarization of the outgoing state is uniquely
determined by the lead states, whenever the outgoing lead
only supports a single channel. In a three-terminal structure,
the outgoing states are largely unpolarized away from the
lead subband edges. Close to the onset of the third and fourth
channel, as well as the consecutive channels, the polarization
shows peak-dip structures, akin to the angular-momentum
Fano resonances in the three-terminal junction.

The considered multiterminal transport properties are ex-
pected to be observable in low-temperature measurements in
nanoscale structures. These can be realized in, e.g., hetero-
structure quantum wells by standard lithographic techniques.
Assuming the structures to be attached to the leads of width
w=400 nm, the considered Rashba SOI strength �
�10−11 eVm for an InGaAs host material, which has been
demonstrated in gated heterostructures.55 For the hole sys-
tems we have assumed a GaAs host material. With the same
lead width as for the electron-transport case and a
heterostructure-well width az=20 nm, the considered
magnetic-field strength was B�33 mT.
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By =10−3�pz
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